Mars Electric Reusable Flyer

Completed Technology Project (2015 - 2016)

Project Introduction

Research will include further development of the vehicle configuration. It will continue the current Autonomy Incubator effort of developing visual odometry algorithms and Simultaneous Linearization and Mapping (SLAM) algorithms for specific application to Mars navigation in canyons and lava tubes. This effort will include wind tunnel testing in the LaRC TDT at Mars flight Reynolds number conditions to validate the design in Mars flight conditions. In addition, vacuum chamber tests and a balloon drop from high altitude (approximately 100k feet) will be performed to verify vehicle controllability and performance in Mars atmosphere density conditions.

Anticipated Benefits

Goal to mature the technology so it can be a payload on the Mars 2020 mission. Flight on Mars would allow better navigation scouting for the ground rover, identification of high-value science targets, and gathering of ultra-high definition imagery for science purposes and the future human missions.

Primary U.S. Work Locations and Key Partners

Mars Electric Reusable Flyer

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Website:	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	2

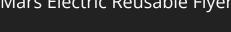
Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)


Responsible Program:

Center Innovation Fund: LaRC CIF

Center Innovation Fund: LaRC CIF

Mars Electric Reusable Flyer

Completed Technology Project (2015 - 2016)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead	NASA	Hampton,
	Organization	Center	Virginia
The Boeing	Supporting	Industry	Chicago,
Company(Boeing)	Organization		Illinois
University of	Supporting	Academia	Storrs,
Connecticut	Organization		Connecticut
University of Illinois at	Supporting	Academia	Urbana,
Urbana-Champaign	Organization		Illinois

Primary U.S. Work Locations		
Connecticut	Illinois	
Virginia		

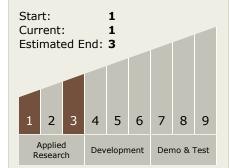
Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Project Management

Program Director:

Michael R Lapointe


Program Manager:

Julie A Williams-byrd

Principal Investigator:

David D North

Technology Maturity (TRL)

Technology Areas

Primary:

- TX04 Robotic Systems └ TX04.2 Mobility
 - └ TX04.2.2 Above-Surface Mobility

